C.U.SHAH UNIVERSITY **Summer Examination-2022**

Subject Name : Mathematical Concepts for Computer Science

	Subject Code : 4CS01BMA2		S01BMA2	Branch: B.C.A.			
	Semest	er: 1	Date: 22/04/2022	Time: 11:00 To 02:00	Marks: 70		
	Instruct (1) (2) (3) (4)	ions: Use of Prog Instruction Draw neat Assume su	grammable calculator & ar s written on main answer b diagrams and figures (if ne itable data if needed.	ny other electronic instrument is p book are strictly to be obeyed. ecessary) at right places.	orohibited.		
Q-1	a)	Attempt t A	he following questions: is an ordered collecti	on of objects.	(14)		
		A. Set		C. Relation			
		B. Functi	on	D. Proposition			
	b)	What is th	e cardinality of the set A=	{1,2,3,4,5}?			
		A. 10		C. 3			
		B. 5		D. 20			
	c)	Which of t	the following symbols repr	resents "is an element of"?			
		$A. \subset$		C. ∈			
		B.⊆		D. None of the above			
	d)	Which of t	the following sets are null	sets?			
		A. { }		C. ø			
		B. Both (A) and (B)	D. {0}			
	e) If set A and set B are two disjoint sets then $A \cap B =$						
		A. A	-	C. ø			
		B. B		D. A∪B			
	f) The relation { $(1,2), (1,3), (3,1), (1,1), (3,3), (3,2), (1,4), (4,2), (3,4)$ } is						
		A. Refle	exive	C. Symmetric			
		B. Trans	sitive	D. asymmetric			
	g)	A function	n from A to B is called onto	o function if its range is			
		A. A		C. Neither A nor B			
		B. B		D. Both A and B			
	h)	If domain	of function $f:x \rightarrow x^2 + 1$ is	$\{0,1\}$, then its range is			
		A. $\{0,1\}$		C. $\{1, 2\}$			
	i)	D. $\{2,3\}$ Transnose	of a row matrix is	$D. \{3,4\}$			
	•)	Δ zero m	natriv	C. Column matrix			
		B. diagor	al matrix	D. row matrix			

j)	$\lim \frac{x^2-x-x}{x}$	$\frac{2}{2}$?
	What is the value of the limit $x \rightarrow 1$ $x^2 - 2x$	
	A2	C1
	B.2	D. 1
k)	If A is a symmetric matrix, then A^{T} =	
	A. A	C. A
	B. 0	D. Diagonal matrix
l)	If the order of matrix A is $m \times p$. And the or	rder of B is $p \times n$. Then the order of matrix
	AB is ?	
	A. $n \times p$	C. m \times n
	B. $p \times n$	D. $n \times m$
m)	The distance between the point $P(1, 4)$ and	Q(4, 0) is
	A. 4	C. 5
	B. 6	D. 3√3
n)	A(-2,5) can be plotted on quadrant.	
	A. first	C. third
	B. second	D. fourth

Attempt any four questions from Q-2 to Q-8

Q-2		Attempt all questions	(14)
	a)	Let $U=\{1,2,3,\ldots,10\}$, $A=\{1,3,5,7,9\}$, $B=\{1,5,6,8\}$, $C=\{1,4,6,7\}$ then verify that	(7)
		(i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
		(ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
	b)	Let $U = \{13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23\}$, $A = \{13, 14, 15, 16\}$, $B = \{13, 15, 17, 19\}$,	(7)
		$C = \{16, 17, 18, 20, 22\}$ then Write down the following sets :	
		$A', B', C', (A')', (B')', (A \cup B)', (A \cap B)', A' \cup C'$	
Q-3		Attempt all questions	(14)
	a)	$\sqrt{z}-2$	(7)
		Evaluate $\lim_{z \to 4} \frac{1}{z-4}$, if it exists.	
	b)		(7)
		$(6+h)^2 - 36$	
		Evaluate $\lim_{h \to 0} \frac{h}{h}$, if it exists.	
Q-4		Attempt all questions	(14)
-	a)	Explain symmetric and skew symmetric matrix with example.	(5)
	b)	Explain representation of relation with example.	(5)
	c)	Let $A = \{1, 2, 3\}$, $B = \{3, 4\}$ and $C = \{1, 4\}$ then verify that	(4)
	,	$A \times (B - C) = (A \times B) - (A \times C)$	

Q-5 Attempt all questions

(14)

a)
If
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{bmatrix}$ then find AB and BA.
b) Prove that $A^3 - 3A^2 + 2A = 0$
If $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$
(7)

Q-6	a)	Attempt all questions Prove that (2,3), (7,4), (8,7) and (3,6) are the vertices of a parallelogram.	(14) (7)
	b)	Prove that $(0,-1)$, $(3,5)$ and $(5,9)$ are collinear points.	(7)
Q-7		Explain following types of sets with example	(14)
		Empty set, infinite set, singleton set, subset, universal set, equal set, equivalent set	

Attempt all questions Q-8

	Attempt all questions	(14)
a)	Explain surjective function, bijective function and injective function with example.	(7)
b)		(7)

Let
$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 2 \end{bmatrix}$$
 then find A^{-1} .